221 research outputs found

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Knowledge Prompting for Few-shot Action Recognition

    Full text link
    Few-shot action recognition in videos is challenging for its lack of supervision and difficulty in generalizing to unseen actions. To address this task, we propose a simple yet effective method, called knowledge prompting, which leverages commonsense knowledge of actions from external resources to prompt a powerful pre-trained vision-language model for few-shot classification. We first collect large-scale language descriptions of actions, defined as text proposals, to build an action knowledge base. The collection of text proposals is done by filling in handcraft sentence templates with external action-related corpus or by extracting action-related phrases from captions of Web instruction videos.Then we feed these text proposals into the pre-trained vision-language model along with video frames to generate matching scores of the proposals to each frame, and the scores can be treated as action semantics with strong generalization. Finally, we design a lightweight temporal modeling network to capture the temporal evolution of action semantics for classification.Extensive experiments on six benchmark datasets demonstrate that our method generally achieves the state-of-the-art performance while reducing the training overhead to 0.001 of existing methods

    Observation of Valley Zeeman and Quantum Hall Effects at Q Valley of Few-Layer Transition Metal Disulfides

    Full text link
    In few-layer (FL) transition metal dichalcogenides (TMDC), the conduction bands along the Gamma-K directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by three-fold rotational symmetry and time reversal symmetry. In even-layers the extra inversion symmetry requires all states to be Kramers degenerate, whereas in odd-layers the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. In this Letter, we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations for the Q valley electrons in FL transition metal disulfide (TMDs), as well as the first quantum Hall effect (QHE) in TMDCs. Our devices exhibit ultrahigh field-effect mobilities (~16,000 cm2V-1s-1 for FL WS2 and ~10,500 cm2V-1s-1 for FL MoS2) at cryogenic temperatures. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMD devices and a spin Zeeman effect in all even-layer TMD devices.Comment: 20 pages, 4 figure

    Molecular state interpretation of charmed baryons in the quark model

    Full text link
    Stimulated by the observation of Ξ›c(2910)+\Lambda_c(2910)^+ by the Belle Collaboration, the SS-wave qqqqΛ‰cΒ (q=uΒ orΒ d)qqq\bar{q}c~(q=u~\text{or}~d) pentaquark systems with II = 0, JPJ^P = 12βˆ’,Β 32βˆ’andΒ 52βˆ’\frac{1}{2}^-,~\frac{3}{2}^- and~\frac{5}{2}^- are investigated in the framework of quark delocalization color screening model(QDCSM). The real-scaling method is utilized to check the bound states and the genuine resonance states. The root mean square of cluster spacing is also calculated to study the structure of the states and estimate if the state is resonance state or not. The numerical results show that Ξ›c(2910)\Lambda_{c}(2910) cannot be interpreted as a molecular state, and Ξ£c(2800)\Sigma_{c}(2800) cannot be explained as the NDND molecular state with JP=1/2βˆ’J^P=1/2^-. Ξ›c(2595)\Lambda_{c}(2595) can be interpreted as the molecular state with JP=12βˆ’J^P=\frac{1}{2}^- and the main component is Ξ£cΟ€\Sigma_{c}\pi. Ξ›c(2625)\Lambda_{c}(2625) can be interpreted as the molecular state with JP=32βˆ’J^P=\frac{3}{2}^- and the main component is Ξ£cβˆ—Ο€\Sigma_{c}^{*}\pi. Ξ›c(2940)\Lambda_{c}(2940) is likely to be interpreted as a molecular state with JP=3/2βˆ’J^P=3/2^-, and the main component is NDβˆ—ND^{*}. Besides, two new molecular states are predicted, one is the JP=3/2βˆ’J^P=3/2^- Ξ£cρ\Sigma_{c}\rho resonance state with the mass around 3140 MeV, another one is the JP=52βˆ’J^P=\frac{5}{2}^- Ξ£cβˆ—Ο\Sigma_{c}^*\rho with the mass of 3188.3 MeV.Comment: 12 pages, 3 figure
    • …
    corecore